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We demonstrate that, in general, only for fluid flows in which the gradient of the strain rate is constant or
zero can the classical Navier-Stokes equations with constant transport coefficients be considered exact. This is
typical of two of the most common types of flow: Couette and Poiseuille. For more complicated flow fields in
which the streaming velocity involves higher order nonlinear terms, the use of nonlocal constitutive equations
gives an exact description of the flow. These constitutive equations involve nonlocal transport kernels. For
momentum transport we demonstrate that nonlocality will be significant for any particular flow field if the even
moments of the nonlocal viscosity kernel are non-negligible. This corresponds to the condition that the strain
rate varies appreciably over the width of the kernel in real space. Such conditions are likely to be dominant for
nanofluidic flows.
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I. INTRODUCTION

For over 150 years classical Navier-Stokes hydrodynam-
ics �1� has been an enormously successful theoretical tool for
predicting the properties of fluids under a huge variety of
flow conditions. Its success extends from describing the dy-
namics of galactic motion �2�, the aerodynamics of flight �3�,
the hydrodynamics of substances from liquid water to dense
polymer melts �4�, and right down to the flows of fluids on
the microscale �5,6�. It has even been demonstrated to re-
main remarkably accurate down to nanoscale dimensions �7�
as long as certain conditions are maintained. In a numerical
study on the Lennard-Jones fluid, Travis et al. �7,8� demon-
strated that for an atomic fluid confined by atomistic walls
the Navier-Stokes equations were valid down to confinement
spaces as low as 10 atomic diameters. Below this spacing the
fluid becomes highly inhomogeneous in space so the as-
sumptions of constant density, constant viscosity, etc. break
down, as do the Navier-Stokes equations.

At such small length scales another significant problem
arises: the transport properties of fluids become nonlocal in
nature. Although this effect has been implicitly built into the
theory of generalized hydrodynamics �9� it has only very
recently been convincingly demonstrated to be true when the
spatial extent of variations in the velocity gradient of the
fluid are of the order of the width of the viscosity kernel �10�.
The kernel itself is a nonlocal material property of the sys-
tem with both wave-vector and frequency dependence �9,11�
and has recently been accurately computed and parameter-
ized for the Lennard-Jones fluid �12�. Alley and Alder �9�
have also computed the kernel for hard sphere fluids at three
deferent state points.

The most significant conclusion to follow from Ref. �10�
is that accurate predictions of the shear stress profile for a
fluid under time-independent flow �or equivalently, the ve-
locity profile of a shearing fluid� is that the full nonlocal
viscosity kernel must be used in such circumstances, rather
than the local Navier-Stokes �infinite wavelength� viscosity.

This then raises an interesting and, as far as we are aware,
unexplored question: to what extent does curvature in the
velocity gradient of fluids affect the Navier-Stokes predic-
tions of the shear stress? To answer this question, we pro-
ceed as follows: In Sec. II A we examine the familiar case of
a local kernel with a constant velocity gradient �strain rate�,
and then consider the effect of introducing a nonlocal kernel
and what effect that has on the predicted shear stress profile.
In Sec. II B we consider both cases again, but this time with
a linear strain rate profile. We note that the cases in Secs.
II A and II B are typical of two of the most common types of
flows, planar Couette and planar Poiseuille flow, respec-
tively, and the investigations are somewhat illuminating.
Then, in Sec. II C we consider the more general case of
predictions of the shear stress profile for fluids with nonlin-
ear strain rate profiles. In Sec. III we compare our local and
nonlocal predictions with some actual molecular dynamics
results and finally offer some conclusions in Sec. IV.

II. SHEAR STRESS WITH DIFFERENT STRAIN RATES

A. Local and nonlocal viscosity kernel with constant
strain rate

We first consider the trivial yet subtle case of a homoge-
neous fluid with a linear time-independent velocity profile
�i.e., constant strain rate�. In the most general case, the shear
stress is computed from the generalized hydrodynamic ex-
pression �9,13�

�xy�r� = �
−�

�

dr���r − r���̇�r�� . �1�

Microscopically, we traditionally write the infinite wave-
length transport properties as delta functions in space, since
the material properties of the fluid are constant in all direc-
tions. In this case, the local �or Navier-Stokes� viscosity ker-
nel can be expressed as �13�

��r − r�� = �0��r − r�� , �2�

where ��r−r�� is the viscosity kernel and �0 is a constant
and equals the zero wave vector viscosity. Substitution of Eq.
�2� into Eq. �1� gives*btodd@swin.edu.au
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�xy�r� = �0�
−�

�

dr���r − r���̇�r�� = �0�̇�r� . �3�

Equation �3� is of course just the standard Navier-Stokes
�Newtonian� expression that relates the shear stress �xy at
some point r to the strain rate �̇ at that point via a constant
viscosity �0. For constant strain rate �̇�r�= �̇ ∀r we just have
a constant shear stress, �xy =�0�̇, the standard planar Couette
flow result.

It is taken for granted that the viscosity kernel for a ho-
mogeneous fluid can be written in the form given by Eq. �2�,
in which the kernel width is infinitesimal �i.e., the viscosity
is a local material property of the fluid�. However, this is
never actually true. The viscosity kernels for a variety of
fluids, such as hard spheres �9�, Lennard-Jones fluids �12�,
and even water �14� have been computed from molecular
dynamics simulations. The fact that the k-space dependence
of this kernel is not a simple constant, but is rather distrib-
uted in a Lorentzian or Gaussian-like manner �12�, signifies
that the kernel is not a delta function in space for any fluid,
no matter how simple. In fact, in Ref. �12� both the k-space
and real-space kernels were computed for a simple shifted
and truncated Lennard-Jones fluid �the Weeks-Chandler-
Anderson �WCA� fluid �15��. The real-space kernel was
found to have a width of roughly three atomic diameters and
could be adequately parametrized by either a sum of two
Gaussians or a Lorentzian-type function. Strictly speaking
then, Eq. �2� is not correct and should be replaced by a more
general form:

��r − r�� = �0f�r − r�� , �4�

where f is some general normalized and even function with
nonzero finite width such that

�
−�

�

dr f�r� = 1. �5�

Substituting Eq. �4� into Eq. �1� gives us

�xy�r� = �0�
−�

�

dr�f�r − r���̇�r�� . �6�

For constant strain rate we find �xy =�0�̇, which is exactly
the same expression as that obtained when assuming a delta
function form of the kernel. Thus we see that for a homoge-
neous fluid with constant strain rate, the fluid behaves as if it
had a local viscosity kernel, �0. It does this precisely because
there is no variation in strain rate over the width of the ker-
nel, which allows us to take the strain rate outside of the
integral in Eq. �6�. This then is the reason why we are justi-
fiably allowed to represent the true, finite-width viscosity
kernel as a delta function, or equivalently, as a constant
transport coefficient.

B. Nonlocal viscosity kernel with linear strain rate

Consider now the case of a nonlocal viscosity kernel and
a linear strain rate. We again consider a three-dimensional
fluid and assume that flow is in the x direction, with gradient
�y in the y direction. Thus

�u�r� = � 0 0 0

�y 0 0

0 0 0
� , �7�

where u�r� is the streaming velocity of the fluid. This of
course is just the geometry associated with planar Poiseuille
flow with quadratic velocity profile. For this geometry all
nonconstant material properties will be functions only of the
y-spatial coordinate. From Eq. �6� we have

�xy�y� = �0��
−�

�

dy�f�y − y��y�. �8�

We now make the substitution u=y−y�⇒du=−dy�, so the
integral becomes

�
−�

�

dy�f�y − y��y� = y�
−�

�

du f�u� − �
−�

�

du f�u�u . �9�

The first integral on the right-hand side �rhs� of Eq. �9� is just
one from the normalization condition, Eq. �5�. The second
integral on the rhs is zero since the integrand is an odd func-
tion of u. Thus Eq. �9� becomes

�
−�

�

dy�f�y − y��y� = y , �10�

and so from Eq. �8� we have the result

�xy�y� = �0�y �11�

for any choice of f�y�. This is a remarkable result because it
is equivalent to what one obtains assuming that Newton’s
law of viscosity is valid, i.e., classical Navier-Stokes hydro-
dynamics, �xy�y�=�0�̇�y�. It says that even in the case of a
quadratic streaming velocity profile we can always expect a
linear shear stress profile, no matter what the precise math-
ematical form of the true viscosity kernel is, as long as the
kernel is an even function in space, which physically it must
be for a homogeneous fluid. Thus in the case of the two most
common simple flow types—planar Couette and Poiseuille
flow—the inclusion of a nonlocal viscosity kernel will give
exactly the same predictions of classical hydrodynamics that
assumes a constant local viscosity. This is true no matter how
wide the true kernel actually is. Once again, this is a result of
the fact that only for linear or quadratic velocity profiles, the
strain rate �velocity gradient� does not vary over any length
scale. Mathematically, this is equivalent to saying that New-
ton’s law of viscosity is always exact as long as d�̇�y� /dy
=c, where c is a constant or zero. In fact, this is a suitable
condition for determining the validity of the Navier-Stokes
treatment for viscous transport no matter how nanoscale the
flow is. In more general cases where this condition is not
met, the use of a nonlocal constitutive equation, such as Eq.
�6�, will be required when variations in the strain rate occur
over molecular length scales. This is now further examined
in what follows.

C. Nonlocal viscosity kernel with nonlinear strain rate

As any analytic function can be expanded into a polyno-
mial series via Taylor expansion, to simplify the mathematics
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we consider first the simple case of a strain rate with form

�̇�y� = �yn, n = 0,1,2, . . . . �12�

The result obtained for this single nonlinear polynomial term
can be generalized to that of any functional form for the
strain rate by taking the infinite series sum of the result. This
represents the Taylor series expansion of some general ana-
lytic function �̇�y� around y=0, as will be demonstrated
later. Note also that we will work in the general case where n
can be either odd �symmetric velocity profile� or even �asym-
metric velocity profile� about y=0. Once again, from Eq. �6�
we have

�xy�y� = �0��
−�

�

dy�f�y − y��y�n. �13�

Making the substitution u=y−y� gives

�xy�y� = �0��
−�

�

du f�u��y − u�n. �14�

We can write the power function inside the integral as

�y − u�n = yn�1 −
u

y
	n

, �15�

which we can expand to give

�y − u�n = yn�1 − a1
u

y
+ a2
u

y
�2

− a3
u

y
�3

+ ¯ � an
u

y
�n	 ,

�16�

where an are coefficients of the expansion and we note that
the last term is +an if n is even and −an if n is odd. Substi-
tution of Eq. �16� into Eq. �14� gives

�xy�y� = �0�yn�
−�

�

du f�u��1 − a1
u

y
+ a2
u

y
�2

− a3
u

y
�3

+ ¯ � an
u

y
�n	

= �0�yn��
−�

�

du f�u� −
a1

y
�

−�

�

du uf�u�

+
a2

y2�
−�

�

du u2f�u� + ¯ �
an

yn�
−�

�

du unf�u�	 .

�17�

From the symmetry of the kernel f , we note that for all odd
powers of u we have

�
−�

�

du f�u�um = 0, m odd. �18�

Therefore

�
−�

�

du f�u��y − u�n = yn�1 +
a2

y2�
−�

�

du f�u�u2

+
a4

y4�
−�

�

du f�u�u4 + ¯

+
an

yn�
−�

�

du f�u�un	 �19�

for n even, or

�
−�

�

du f�u��y − u�n = yn�1 +
a2

y2�
−�

�

du f�u�u2

+
a4

y4�
−�

�

du f�u�u4 + ¯

+
an−1

yn−1�
−�

�

du f�u�un−1	 �20�

for n odd. So finally we have for n even

�xy�y� = �0�yn�1 +
a2

y2�
−�

�

du f�u�u2 +
a4

y4�
−�

�

du f�u�u4

+ ¯ +
an

yn�
−�

�

du f�u�un	
= �0�yn�1 +

b2

y2 +
b4

y4 + ¯

bn

yn	
= �0��bn + bn−2y2 + bn−4y4 + ¯ + yn� , �21�

where the coefficients bk are given by the even moments of
the kernel,

bk � ak�
−�

�

du f�u�uk. �22�

Similarly, for n odd we have

�xy�y� = �0��bn−1y + bn−3y3 + bn−5y5 + ¯ + yn� . �23�

The equivalent local �Newtonian� shear stress is given as

�xy
L �y� = �0�yn. �24�

We can see now that the local and nonlocal shear stresses
are not in general the same for flows where the curvature of
the strain rate is nonzero. The degree of nonlocality depends
on the relative contribution of the different moments to the
total stress given by Eqs. �21� and �23�, which in turn de-
pends on how much variation in strain rate takes place over
the width of the kernel �i.e., the degree of curvature of the
strain rate profile with respect to the kernel width�. While
Eqs. �21� and �23� above are just the simplified expressions
for a strain rate that is either an odd or even power of y, as
previously stated the general case for some arbitrary function
can be obtained by summing over an infinite series of terms
given in Eqs. �21� and �23�, as long as the strain rate function
is analytic. Thus a full Taylor series expansion of a more
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complicated strain rate function will still result in a polyno-
mial series such as given by Eqs. �21� and �23�, and hence
the conclusion remains the same.

To demonstrate this explicitly, we repeat the above deri-
vation, only this time assuming a general arbitrary form for
the strain rate, �̇. We also assume that �̇�y� is analytic about
the midpoint of the flow y=0, so it can be Taylor expanded.
We can therefore express �̇�y� as

�̇�y� = 
n=0

�
�̇n�0�

n!
yn, �25�

where �̇n is the nth derivative of �̇ with respect to y. Thus the
nonlocal shear stress can be expressed as

�xy�y� = �0�
−�

�

dy�f�y − y��
n=0

�
�̇n�0�

n!
y�n

= �0
n=0

�
�̇n�0�

n!
�

−�

�

dy�f�y − y��y�n. �26�

The integrand in Eq. �26� can be expanded in the same man-
ner as was done from Eqs. �13�–�23�, which will give

�xy�y� = �0
n=0

�
�̇n�0�

n!
�bn

n + bn−1
n y + bn−2

n y2 + bn−3
n y3 + ¯ + yn�

�27�

=�0
n=0

�
�̇n�0�

n! �
i=0

n

bn−i
n yi	 , �28�

where b0
n=a0�−�

� du f�u�=a0�1. Here we also note that the
coefficients bk

n are analogous to those defined in Eq. �22�
except that now an entire set of coefficients bk exists for each
value of n in the Taylor expansion �hence the notation bk

n�.
Equation �27� could be further simplified by collecting all
coefficients of terms yn together �in effect removing the term
in square brackets and simply having a sum over n with new
coefficients cn�. However, we keep it in this form so that we
can compare it directly with the expression for the local
shear stress, which is simply

�xy
L �y� = �0

n=0

�
�̇n�0�

n!
yn. �29�

Clearly, Eqs. �27� and �29� are not the same. Thus for any
general strain rate in which the curvature is nonzero, nonlo-
cality will become important when the contributions of the
moments of the kernel become non-negligible in Eq. �27�.
Our approach here gives greater insight into the effect of
nonzero strain rate curvature on the fluid stress than tradi-
tional gradient expansion treatments �10�.

III. COMPARISON WITH MOLECULAR DYNAMICS

Using nonequilibrium molecular dynamics �NEMD� it is
possible to demonstrate the effect of the nonlinear strain rate.
Initially, however, it would be insightful to show that for a

fluid flow with linear strain rate the local treatment indeed
suffices.

Consider an atomic fluid confined between two parallel
atomistic walls located at positions −Ly /2 and Ly /2, where
Ly is the width of the channel, such that the y direction is the
direction of confinement. In the x and z directions the system
is periodic �or infinite in extent�. A constant external force
field, Fe �or equivalently a constant pressure gradient�, acts
on the fluid in the x direction, such that a flow is generated in
this direction. This, of course, results in the classical Poi-
seuille flow. As mentioned above, this system has previously
been studied intensively using NEMD and we will not go
into details about the simulation technique, but refer to Ref.
�7� and references therein. Figure 1�a� shows NEMD data of
the strain rate profile for such a Poiseuille flow. Simulation
details can be found in the figure caption. It is seen that near
the wall-fluid boundary the profile is not linear which is due
to the large density variation in this region �16�. However, in
the interior of the channel the system is homogeneous which
is also manifested in the linear strain rate profile. According
to Sec. II this means that the local Newtonian expression for
the shear stress is valid. This can readily be tested by com-
paring the predicted stress with the stress computed in the
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FIG. 1. �Color online� �a� Piecewise polynomial fit of NEMD
data of the strain rate profile in a Poiseuille flow. Data at the far end
points are not included in order to highlight the profile in the chan-
nel interior. The fluid is a Weeks-Chandler-Andersen �WCA� fluid
�15�, with density 	=0.6, temperature T=0.726, and viscosity �0

=0.679. The width of the channel is Ly =10.2 and the external force
field is Fe=0.02. All quantities are given in usual reduced molecular
dynamics units; see, for example, Ref. �30�. �b� Resulting shear
stress profiles in the midchannel as predicted by the local descrip-
tion �dotted line� and the nonlocal description �full line�. Exact
molecular dynamics data �circles� are also shown for comparison.
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NEMD simulations. To this end we note that the stress can
be evaluated via the density profile, 	�y�, by �17�

�xy�y� = − �
−Ly/2

y

dy�Fe�y��	�y�� = − Fe�
−Ly/2

y

dy�	�y�� ,

�30�

where 	�y� is easily obtained in the simulation. In Fig. 1�b�
the predicted local stress profile calculated using Eq. �3� and
the strain rate profile in Fig. 1�a� is plotted �dotted line�
together with the NEMD data �circles�. The zero wave-
vector viscosity is extrapolated from data given in Hansen et
al. �12�. Only the profiles in the interior of the channel are
included. It is seen that the local prediction is in excellent
agreement with the molecular dynamics results, which is also
expected from the fact that the strain rate is linear. The re-
sults can furthermore be compared with the nonlocal consti-
tutive model, Eq. �6�, where

�0f�y� =
�0

2�2

��1e−��1y�2/2 + �2e−��2y�2/2� , �31�

where �1=1.812 and �2=4.670 as given in Ref. �12�. It
should also here be mentioned that this functional form is not
the only satisfactory expression for the kernel, but it is the
most convenient form �10,12�. The full line in Fig. 1 repre-
sents the convolution of the strain rate profile in Fig. 1�a�
with the kernel given in Eq. �31�. It is clearly seen that the
local and nonlocal models predict the same shear stress as
expected; however, there is an advantage using the nonlocal
approach in that it smoothens the profile eliminating the sta-
tistical noise considerably.

Using the sinusoidal transverse force �STF� method �18� it
is possible to simulate fluid flows with a sinusoidal or cosine
strain rate profile, i.e., profiles with a large degree of nonlin-
earity. As for the direct NEMD method, the STF method is
well described in the literature and we will refer the reader to
Refs. �12,18,19�. The applied force field used in this present
work is

Fe�y� = F0 cos�kny� , �32�

where F0 is the force amplitude and kn is the wave vector of
excitation given as kn=2
n /Ly, n being the wave number. In
the limit of small force field amplitude, the stress can be
computed directly via �10,12�

�xy�y� = −
F0	

kn
sin�kny� , �33�

where 	 is the fluid density. In Fig. 2�a� we have plotted the
strain rate profile, which is given by �̇�y�=−�̇kn

sin�kny�,
where �̇kn

is the strain rate Fourier coefficient obtained in the
STF simulation �19�. The local stress profile is plotted in Fig.
2�b� �dotted line�, together with the nonlocal stress profile
�full line� and the simulation data using Eq. �33� �circles�.
For flows with strong nonlinear strain rate it can be seen that
the local Newtonian constitutive equation relating the stress
with the strain rate fails. It must here be pointed out that for
sufficiently small values of wave number, n, the local predic-
tion agrees quite well with the exact measured stresses �10�.

As mentioned earlier, this is because the strain rate does not
vary to such a degree that nonlocal effects are important. In
principle it is possible to calculate the moments of the gen-
eral normalized function, f�y�, given in Eq. �4�, and therefore
the effects of the higher order terms in the Taylor expansion
of the stress, Eq. �27�. However, since the stress is given as a
trigonometric function, the expansion converges very slowly
and will therefore not provide much useful information in
this particular example.

IV. CONCLUSION

We have shown that in all but the simplest flows, nonlocal
constitutive equations should be invoked for a complete de-
scription of the flow and stress fields. We find that the degree
of importance of nonlocal effects can in fact be determined
by computing the even moments of the viscosity kernel. This
is mathematically equivalent to stating that nonlocality domi-
nates transport phenomena when the variation in the strain
rate is of the order of the width of the viscosity kernel, which
in turn will be of the order of molecular length scales. While
this condition will never dominate for macroscopic flows, it
is likely to be fundamentally important for microscopic phe-
nomena such as flows confined to nanometer dimensions.

a)

y

γ̇
(y

)

420-2-4

0.2

0.1

0

-0.1

-0.2

b)

y
σ

x
y
(y

)

420-2-4

0.1

0.05

0

-0.05

-0.1

FIG. 2. �Color online� �a� The strain rate profile for a STF flow.
The fluid is a Weeks-Chandler-Andersen �WCA� fluid, with density
	=0.485, temperature T=0.726, and viscosity �0=0.397. The exter-
nal force field amplitude is F0=0.25 and the wave vector is kn

=2.311. All quantities are given in usual reduced molecular dynam-
ics units; see, for example, Ref. �30�. �b� Resulting shear stress
profiles as predicted by the local description �dotted line� and the
nonlocal description �full line�. Exact molecular dynamics data
�circles� are also shown for comparison.
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Other potential applications include shock wave phenomena
�9,20–23�, shear banding �24�, flows of micellar solutions
�25�, suspensions of rigid fibers �26�, jammed glassy systems
�27�, the influence of boundary conditions �28,29�, and pos-
sibly even turbulence.

Finally, we make an observation about the role of momen-
tum balance in the shear stress. With appropriately known
boundary conditions one can solve the momentum continuity
equation directly and obtain the shear stress. For planar Cou-
ette flow, this always leads to a constant shear stress, whereas
for planar Poiseuille flow it is trivial to show that the shear
stress is directly proportional to the integral of the density
profile �17�, as is done in Eq. �30�. It is the momentum bal-

ance that governs the stress profile for any particular flow
geometry, and it is this property of a system that is funda-
mental. The use of a correctly formulated nonlocal constitu-
tive equation therefore links the nonlocal nature of atomic
correlations to momentum balance and transport. This is an
interesting relationship and one that would merit further in-
vestigation.
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